AIEEE

76.	Which of the following sets of quantum numbers is correct for an electron in 4f orbital?			
	(1) n = 4, I = 3, m = +4, s = $+\frac{1}{2}$	(2) n = 3, I = 2, m = -2, S = $+\frac{1}{2}$		
	(3) n =4, l = 3, m = +1, s = $+\frac{1}{2}$	(4) n =4, l = 4, m -4, s = $-\frac{1}{2}$		
Ans.	n =4, l = 3, m = +1, s = $+\frac{1}{2}$			
77.	Consider the ground state of Cr atom (Z = 24). The number of electrons with the azimuthal quantum numbers I =1 and 2 are respectively (1) 12 and 4 (2) 16 and 5 (3) 16 and 4 (4) 12 and 5			
Ans.	12 and 5			
78.	Which one the following ions has the highest value of ionic radius? (1) Li^+ (2) F^- (3) O^{2^-} (4) B^{3+}			
Ans.	O ²⁻			
79.	The wavelength of the radiation emitted, when in hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = 1.097×10^7 m ⁻¹) (1) 91 nm (3) 406 nm (4) 192 nm			
Ans.	91 nm			
80.	The correct order of bond angles (smallest first) in H_2S , NH_3 , BF_3 and SiH_4 is (1) $H_2S < SiH_4 < NH_3 < BF_3$ (2) $H_2S < NH_3 < BF_3 < SiH_4$ (3) $H_2S < NH_3 < SiH_4 < BF_3$ (4) $NH_3 < H_2S < SiH_4 < BF_3$			
Ans.	$H_2S < NH_3 < SiH_4 < BF_3$			
81.	Which one the following sets of ions represents the collection of isoelectronic species?			
	(1) K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻ (3) K ⁺ , Cl ⁻ , Mg ²⁺ , Sc ³⁺	(2) Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻ (4) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻		
Ans.	K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻			
82.	Among Al_2O_3 , SiO_2 , P_2O_3 and SO_2 the co (1) $SO_2 < P_2O_3 < SiO_2 < Al_2O_3$ (3) $Al_2O_3 < SiO_2 < SO_2 < P_2O_3$	(2) $AI_2O_3 < SiO_2 < P_2O_3 < SO_2$		
Ans.	$AI_2O_3 < SiO_2 < P_2O_3 < SO_2$			
83.	The bond order in NO is 2.5 while that in NO ⁺ is 3. Which of the following statements is true for these two species? (1) Bond length in NO ⁺ is greater than in NO (2) Bond length is unpredictable			

- (3) Bond length in NO⁺ in equal to that in NO (4) Bond length in NO is greater than in NO⁺
- (4) Bond length in NO is greater than in NO⁺
- **Ans.** Bond length in NO is greater than in NO⁺
- 84. The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic and then an endothermic step as shown below $O(g) +e^{-}O^{-}(g)DH^{0} = -142 \text{ kJ mol}^{-1}$
 - U(g) + U(g)DH = -142 K mol
 - $O^{-}(g) + e^{-}O^{2-}(g)DH^{0} = 844 \text{ kJ mol}^{-1}$
 - (1) Oxygen is more electronegative
 - (2) O^{-} ion has comparatively larger size than oxygen atom
 - (3) O^{-} ion will tend to resist the addition of another electron
 - (4) Oxygen has high electron affinity
- **Ans.** O⁻ ion will tend to resist the addition of another electron
- 85. The states of hybridization of boron and oxygen atoms in boric acid (H_3BO_3) are respectively
 - (1) sp^2 and sp^2
 - (3) sp^3 and sp^2

(2) sp³ and sp³ (4) sp² and sp³

- **Ans.** sp² and sp³
- 86. Which one of the following has the regular tetrahedral structure? (1) XeF_4 (3) BF_4^- (2) $[Ni(CN)_4]^2$ (4) SF_4
- Ans. BF₄
- 87. Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them? (1) $(n - 1)d^8ns^2$ (2) $(n-1)d^5ns^2$ (3) $(n-1)d^3ns^2$ (4) $(n-1)d^5ns^{-1}$
- **Ans.** (n-1)d⁵ns²
- 88. As the temperature is raised from 20°C to 40°C, the average kinetic energy of neon atoms changes by a factor of which of the following? (1) $\frac{1}{2}$ (2) 2

(1) / 2		(Z) Z		
(3) $\frac{313}{293}$	A.	(4) $\sqrt{\frac{313}{293}}$		

- **Ans.** $\frac{313}{293}$
- 89. The maximum number of 90° angles between bond pair of electrons is observed in
 - (1) dsp³ hybridization (3) dsp² hybridization
- (2) sp³d² hybridization(4) sp³d hybridization

- **Ans.** sp³d² hybridization
 - 90. Which one of the following aqueous solutions will exhibit highest boiling point? (1) $0.01 \text{ M Na}_2\text{SO}_4$ (2) 0.015 M glucose

(3) 0.015 M urea

(4) 0.01 M KNO₃

Ans. 0.01 M Na₂SO₄

- 91. Which among the following factors is the most important in making fluorine the strongest oxidizing halogen? (1) Electron affinity
 - (3) Hydration enthalpy

(2) Bond dissociation energy

- (4) Ionization enthalpy
- **Ans.** Bond dissociation energy
- 92. In Vander Waals equation of state of the gas law, the constant 'b' is a measure of (1) intermolecular repulsions (2) intermolecular collisions per unit volume

(2) HPO_{4}^{2}

 $(4) P_2 O_5$

- (3) Volume occupied by the molecules (4) intermolecular attraction
- **Ans.** Volume occupied by the molecules
- 93. The conjugate base of $H_2PO_4^-$ is (1) PO_4^{3} (3) H₃PO₄
- Ans. HPO₄²⁻
- 94. 6.02×10^{20} molecules of urea are present in 100 ml of its solution. The concentration of urea solution is (1) 0.001 M (2) 0.1 M (4) 0.01 M (3) 0.02 M
- **Ans.** 0.01 M
- To neutralize completely 20 mL of 0.1 M aqueous solution of phosphorous acid 95. (H₃PO₃), the volume of 0.1 M aqueous KOH solution required is (1) 10 mL (2) 60 mL (3) 40 mL (4) 20 mL
- **Ans.** 40 mL
- For which of the following parameters the structural isomers C₂H₅OH and 96. CH_3OCH_3 would be expected to have the same values? (Assume ideal behaviour)
 - (1) Heat of vaporization
 - (2) Gaseous densities at the same temperature and pressure
 - (3) Boiling points
 - (4) Vapour pressure at the same temperature
- **Ans.** Gaseous densities at the same temperature and pressure
- 97. Which of the following liquid pairs shows a positive deviation from Raoult's law? (1) Water – hydrochloric acid (2) Acetone – chloroform (3) Water – nitric acid (4) Benzene – methanol
- **Ans.** Benzene methanol
- Which one of the following statements is false? 98.

- (1) Raoult's law states that the vapour pressure of a components over a solution is proportional to its mole fraction
- (2) Two sucrose solutions of same molality prepared in different solvents will have the same freezing point depression
- (3) The correct order of osmotic pressure for 0.01 M aqueous solution of each compound is
 - $BaCl_2 > KCl > CH_3COOH > sucrose$
- (4) The osmotic pressure $(\pi) = MRT$, where M is the molarity of the solution
- **Ans.** Two sucrose solutions of same molality prepared in different solvents will have the same freezing point depression
- 99. What type of crystal defect is indicated in the diagram below? Na⁺ Cl⁻ Na⁺Cl⁻ Na⁺Cl⁻ $Na^+ Cl^- \Box Cl^- Na^+ Cl^-$ Cl⁻ Na⁺Cl⁻ Na⁺ (2) Frenkel and Schottky defects (1) Frenkel defect (3) Interstitial defect (4) Schottky defect

Ans. Schottky defect

- 100. An ideal gas expands in volume from 1×10^{-3} m³ to 1×10^{-2} m³ at 300 K against a constant pressure of 1×10⁵ Nm⁻². The work done is (1) - 900(2) 900 kl (4) -900 kl
 - (3) 2780 kJ

Ans. -9001

- 101. In hydrogen oxygen fuel cell, combustion of hydrogen occurs to (1) generate heat
 - (2) remove adsorbed oxygen from electrode surfaces
 - (3) produce high purity water
 - (4) create potential difference between the two electrodes
- **Ans.** create potential difference between the two electrodes
- 102. In first order reaction, the concentration of the reactant decreases from 0.8 M to 0.4 M in 15 minutes. The time taken for the concentration to change from 0.1 M to 0.025 M is (1) 30 minutes (2) 60 minutes
 - (3) 7.5 minutes (4) 15 minutes
- Ans. 30 minutes
- 103. What is the equilibrium expression for the reaction $P_{4(s)} + 5O_{2(g)} \longrightarrow P_4O_{10(s)}$? (1) Kc = $[P_4O_{10}] / P_4] [O_2]^5$ (2) Kc = $1/[O_2]^5$ (3) Kc = $[O_2]^5$ (4) Kc = $[P_4O_{10}] / 5[P_4][O_2]$

Ans. $Kc = 1/[O_2]^5$

104. For the reaction, CO(g) + Cl₂(g) \longrightarrow COCl₂(g) the $\frac{K_p}{K_p}$ is equal to

(1)
$$\frac{1}{RT}$$
 (2) 1.0
(3) \sqrt{RT} (4) RT

Ans.
$$\frac{1}{RT}$$

105. The equilibrium constant for the reaction $N_2(g) + O_2(g) = 2NO(g)$ at temperature T is 4×10^{-4} . The value of Kc for the reaction $NO(g) = \frac{1}{2}N_2(g) + \frac{1}{2}N_2(g)$

(2) 0.02

(4)50

 $\frac{1}{2}O_2(g)$ at the same temperature is (1) 2.5×10² (3) 4×10⁻⁴

Ans. 50

106. The rate equation for the reaction $2A + B \longrightarrow C$ is found to be: rate k[A][B]. The correct statement in relation to this reaction is that the (1) unit of K must be s⁻¹

- (2) values of k is independent of the initial concentration of A and B
- (3) rate of formation of C is twice the rate of disappearance of A
- (4) $t_{1/2}$ is a constant
- Ans. values of k is independent of the initial concentration of A and B
- 107. Consider the following E° values $E^{o}_{Fe^{3+}/Fe^{2+}} = 0.77 V$ $E^{o}_{Sn^{2+}/Sn} = -0.14V$ Under standard conditions the potential for the reaction $Sn(s) + 2Fe^{3+}(aq) \longrightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$ is (1) 1.68 V (3) 0.91 V (4) 1.40 V

Ans. 0.91 V

108. The molar solubility product is K_{sp} . 's' is given in terms of K_{sp} by the relation

(1)
$$s = \mathop{c}_{e} \frac{dK_{sp}}{2128 g} \overset{\dot{o}^{1/4}}{\div}$$

(2) $s = \mathop{c}_{e} \frac{dK_{sp}}{256 g} \overset{\dot{o}^{1/5}}{\div}$
(3) $s = (256K_{sp})^{1/5}$
(4) $s = (128K_{sp})^{1/4}$

Ans. $s = \overset{aK_{sp}}{\overset{c}{c}} \overset{o}{\overset{c}{c}} \overset{o}{\overset{c}{c}} \overset{o}{\overset{c}{c}}$

 109. The standard e.m.f of a cell, involving one electron change is found to be 0.591 V at 25°C. The equilibrium constant of the reaction is (F = 96,500 C mol⁻¹: R = $8.314 \text{ JK}^{-1} \text{ mol}^{-1}$)

 (1) 1.0×10^1 (2) 1.0×10^{30}

 (3) 1.0×10^{10} (4) 1.0×10^5

Ans. 1.0×10¹⁰

- 110. The enthalpies of combustion of carbon and carbon monoxide are -393.5 and -283 kJ mol⁻¹ respectively. The enthalpy of formation of carbon monoxide per mole is

 (1) 110.5 kJ
 (2) -110.5 kJ
 - (1) 110.5 kJ (2) -110.5 kJ (3) -676.5 kJ (4) 676.5 kJ
- **Ans.** -110.5 kJ
- 111. The limiting molar conductivities Λ° for NaCl, KBr and KCl are 126, 152 and 150 S cm² mol⁻¹ respectively. The Λ° for NaBr is

 (1) 128 S cm² mol⁻¹
 (2) 302 S cm² mol⁻¹

 (3) 278 S cm² mol⁻¹
 (4) 176 S cm² mol⁻¹
- **Ans.** 128 S cm² mol⁻¹

112. In a cell that utilises the reaction $Zn(s) + 2H^+(aq) \longrightarrow Zn^{2+}(aq) + H_2(g)$ addition of H_2SO_4 to cathode compartment, will (1) lower the E and shift equilibrium to the left

- (2) increases the E and shift equilibrium to the left
- (3) increase the E and shift equilibrium to the right
- (4) Lower the E and shift equilibrium to the right
- Ans. increase the E and shift equilibrium to the right
- 113. Which one the following statement regarding helium is incorrect?
 - (1) It is used to fill gas balloons instead of hydrogen because it is lighter and non – inflammable
 - (2) It is used in gas cooled nuclear reactors
 - (3) It is used to produce and sustain powerful superconducting reagents
 - (4) It is used as cryogenic agent for carrying out experiments at low temperatures
- Ans. It is used to fill gas balloons instead of hydrogen because it is lighter and non inflammable
- 114. Identify the correct statements regarding enzymes
 - (1) Enzymes are specific biological catalysts that can normally function at very high temperature (T \sim 1000 K)
 - (2) Enzymes are specific biological catalysts that the posses well defined active sites
 - (3) Enzymes are specific biological catalysts that can not be poisoned
 - (4) Enzymes are normally heterogeneous catalysts that are very specific in their action
- **Ans.** Enzymes are specific biological catalysts that the posses well defined active sites
- 115. One mole of magnesium nitride on the reaction with an excess of water gives
 (1) one mole of ammonia
 (2) two moles of nitric acid
 (3) two moles of ammonia
 (4) one mole of nitric acid
- Ans. two moles of ammonia

- 116. Which one of the following ores is best concentrated by froth floatation method?
 - (1) Magnetite
 - (3) Galena

(2) Malachite

(4) Cassiterite

- Ans. Galena
- 117. Beryllium and aluminium exhibit many properties which are similar. But the two elements differ in
 - (1) exhibiting maximum covalency in compound
 - (2) exhibiting amphoteric nature in their oxides
 - (3) forming covalent halides
 - (4) forming polymeric hydrides
- **Ans.** exhibiting maximum covalency in compound
- 118.Aluminium chloride exists as dimer, Al_2Cl_6 in solid state as well as in solution of
non-polar solvents such as benzene. When dissolved in water, it gives
(1) $Al^{3+} + 3Cl^{-}$
(2) $Al_2O_3 + 6HCl$
(3) $[Al(OH)_6]^{3-}$
(D) $[Al(H_2O)_6]^{3+} + 3Cl^{-}$
- **Ans.** $[Al(H_2O)_6]^{3+} + 3Cl^{-}$
- 119. The soldiers of Napolean army while at Alps during freezing winter suffered a serious problem as regards to the tin buttons of their uniforms. White metallic tin buttons got converted to grey powder. This transformation is related to (1) an interaction with nitrogen of the air at very low temperatures
 - (2) an interaction with water vapour contained in the humid air
 - (3) a change in the partial pressure of oxygen in the air
 - (4) a change in the crystalline structure of tin
- Ans. a change in the crystalline structure of tin
- 120. The $E^{o}_{M^{+3}/M^{2+}}$ values for Cr. Mn, Fe and Co are 0.41, +1.57, + 0.77 and +1.97 V respectively. For which one of these metals the change in oxidation state form +2 to +3 is easiest?
 - (1) Cr
 - (3) Fe

(2) Co (4) Mn

- Ans. Cr
- 121. Excess of KI reacts with $CuSO_4$ solution and then $Na_2S_2O_3$ solution is added to it. Which of the statements is incorrect for this reaction? (1) Cu_2I_2 is reduced (3) $Na_2S_2O_3$ is oxidized (4) CuI_2 is formed
- **Ans.** Cul₂ is formed
- 122. Among the properties (a) reducing (b) oxidising (c) complexing, the set of properties shown by CN⁻ ion towards metal species is
 (1) a, b
 (2) a, b, c
 (3) c, a
 (4) b, c
- **Ans.** c, a

123. The coordination number of central metal atom in a complex is determined by (1) the number of ligands around a metal ion bonded by sigma bonds (2) the number of only anionic ligands bonded to the metal ion

(3) the number of ligands around a metal ion bonded by sigma and pi- bonds both

(4) the number of ligands around a metal ion bonded by pi-bonds

- **Ans.** the number of ligands around a metal ion bonded by sigma
- 124. Which one of the following complexes in an outer orbital complex? (1) $[Fe(CN)_6]^{4-}$ (2) $[Ni(NH_3)_6]^{2+}$ (3) $[Co(NH_3)_6]^{3+}$ (4) $[Mn(CN)_6]^{4-}$
- **Ans.** $[Ni(NH_3)_6]^{2+}$
- 125. Coordination compound have great importance in biological systems. In this context which of the following statements is incorrect?
 - (1) Chlorophylls are green pigments in plants and contains calcium
 - (2) Carboxypeptidase A is an enzyme and contains zinc
 - (3) Cyanocobalamin is B₁₂ and contains cobalt
 - (4) Haemoglobin is the red pigment of blood and contains iron
- **Ans.** Chlorophylls are green pigments in plants and contains calcium
- 126. Cerium (Z = 58) is an important member of the lanthanoids. Which of the following statements about cerium is incorrect?
 - (1) The common oxidation states of cerium are +3 and +4
 - (2) Cerium (IV) acts as an oxidizing agent
 - (3) The +4 oxidation state of cerium is not known in solutions
 - (4) The +3 oxidation state of cerium is more stable than the +4 oxidation state
- **Ans.** The +4 oxidation state of cerium is not known in solutions
- 127. Which one the following has largest number of isomers? (1) $[Ru(NH_3)_4Cl_2^+]$ (2) $[Co(en)_2Cl_2]^+$ (3) $[Ir(PR_3)_2 H(CO)]^{2+}$ (4) $[Co(NH_3)_5Cl]^{2+}$ (R -= alkyl group, en = ethylenediamine)
- **Ans.** [Co(en)₂Cl₂]⁺
- 128. The correct order of magnetic moments (spin only values in B.M.) among is (1) $[MnCl_4]^{2-} > [CoCl_4]^{-2} > [Fe(CN)_6]^{-4}$ (2) $[Fe(CN)_6]^{-4} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$ (3) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$ (4) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$ (Atomic numbers: Mn = 25; Fe = 26, Co =27)
- **Ans.** $[MnCl_4]^{2-} > [CoCl_4]^{-2} > [Fe(CN)_6]^{-4}$
- 129. Consider the following nuclear reactions $_{92}^{238}M \otimes_{y}^{x}N +_{2}^{4}He$ $_{y}^{x}N \otimes_{B}^{A}L + 2b^{+}$ The number of neutrons in the element L is (1) 142 (2) 146

(3) 140

(4) 144

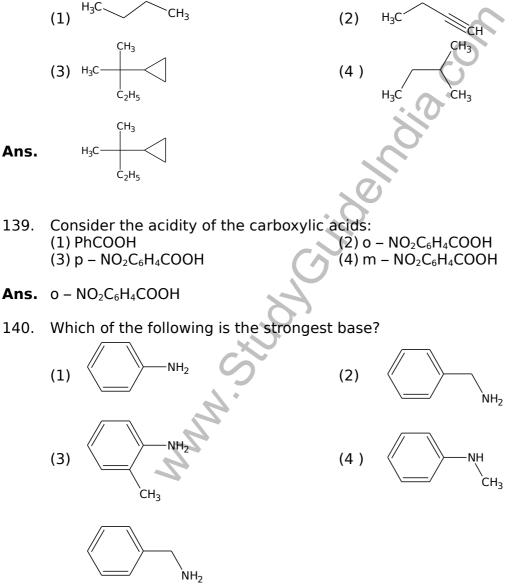
- **Ans.** 144
- 130. The half life of a radioisotope is four hours. If the initial mass of the isotope was 200 g, the mass remaining after 24 hours undecayed is
 (1) 1.042 g
 (2) 4.167 g
 - (3) 3.125 g (4) 2.084 g
- **Ans.** 3.125 g
- 131. The compound formed in the positive test for nitrogen with the Lassaigne solution of an organic compound is (1) Fe₄[Fe(CN)₆]₃ (2) Na₄[Fe(CN)₅NOS] (3) Fe(CN)₃ (4) Na₃[Fe(CN)₆]
- **Ans.** $Fe_4[Fe(CN)_6]_3$
- 132. The ammonia evolved from the treatment of 0.30 g of an organic compound for the estimation of nitrogen was passed in 100 mL of 0.1 M sulphuric acid. The excess of acid required 20 mL of 0.5 M sodium hydroxide solution hydroxide solutio for complete neutralization. The organic compound is

 (1) acetamide
 (2) thiourea
 (3) urea
- Ans. urea
- 133. Which one of the following has the minimum boiling point?
 (1) n-butane
 (2) isobutane
 (3) 1- butene
 (4) 1- butyne
- **Ans.** isobutane
- 134. The IUPAC name of the compound

но

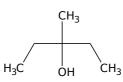
(1) 3, 3- dimethyl -1- hydroxy cyclohexane
(2) 1,1 – dimethyl -3- cyclohexanol
(3) 3,3- dimethyl -1- cyclohexanol
(4) 1,1 – dimethyl -3- hydroxy cyclohexane

- **Ans.** 3,3- dimethyl -1- cyclohexanol
- 135. Which one the following does not have sp² hybridized carbon?
 (1) Acetone
 (2) Acetamide
 (3) Acetonitrile
 (4) Acetic acid

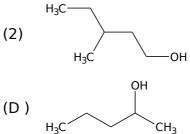

Ans. Acetonitrile

- 136. Which of the following will have meso-isomer also?
 (1) 2- chlorobutane
 (2) 2- hydroxyopanoic acid
 (3) 2,3 dichloropentane
 (4) 2-3- dichlorobutane
- **Ans.** 2-3- dichlorobutane

137. Rate of the reaction $R \longrightarrow Z + Nu^{-} \longrightarrow R \longrightarrow Nu + Z^{-}$ is fastest when Z is (1) Cl (3) OC₂H₅ (2) OCOCH₃ (4) NH₂



138. Amongst the following compound, the optically active alkane having lowest molecular mass is


- 141.Which base is present in RNA but not in DNA?
(1) Uracil
(3) Guanine(2) Thymine
(4) Cytosine
- Ans. Uracil

- 142. The compound formed on heating chlorobenzene with chloral in the presence concentrated sulphuric acid is (1) gammexene (2) hexachloroethane (3) Freon (4) DDT Ans. DDT 143. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is (1) $CH_3COOC_2H_5 + NaCl$ (2) $CH_3CI + C_2H_5COONa$ $(3) CH_3COCI + C_2H_5OH + NaOH$ (4) $CH_3COONa + C_2H_5OH$ **Ans.** $CH_3COOC_2H_5 + NaCl$ 144. Acetyl bromide reacts with excess of CH₃MgI followed by treatment with a saturated solution of NH₄Cl given (1)acetone (2)acetyl iodide (3) 2- methyl -2- propanol (4) acetamide Ans. 2- methyl -2- propanol Which one of the following reduced with zinc and hydrochloric acid to give the 145. corresponding hydrocarbon? (2) Butan -2-one (1) Ethyl acetate (3) Acetamide (4) Acetic acid Ans. Butan -2-one 146. Which of the following undergoes reaction with 50% sodium hydroxide solution to give the corresponding alcohol and acid? (1) Phenol (2) Benzoic acid (3) Butanal (4) Benzaldehyde Ans. Benzaldehyde 147. Among the following compound which can be dehydrated very easily is H₃C H₃C (1)(2)

CH₃

óн

148. Which of the following compound is not chiral?

ĊН₃

- (1) 1- chloropentane(3) 1-chloro -2- methyl pentane
- (2) 3-chloro-2- methyl pentane
- (4) 2- chloropentane

Ans. 1- chloropentane

- 149. Insulin production and its action in human body are responsible for the level of diabetes. This compound belongs to which of the following categories? (2) An antibiotic (1) A co- enzyme (3) An enzyme (4) A hormone
- Ans. A hormone
- 150. The smog is essentially caused by the presence of (1) O_2 and O_3 (2) O_3 and N_2 (3) Oxides of sulphur and nitrogen (4) O_2 and N_2
- **Ans.** Oxides of sulphur and nitrogen

www.

SOLUTIONS (AIEEE)

76.	(3)	77.	(4)	7	78.	(3)		79.	(1)
80.	(3)	81.	(1)	8	32.	(2)		83.	(4)
84.	(3)	85.	(4)	8	36.	(3)		87.	(2)
88.	(3)	89.	(2)	Q	90.	(1)		91.	(2)
92.	(3)	93.	(2)	ç	94.	(4)		95.	(3)
96.	(2)	97.	(4)	Q	98.	(2)		99.	(4)
100.	(1)	101.	(4)	1	102.	(1)		103.	(2)
104.	(1)	105.	(4)	1	106.	(2)	\mathcal{O}	107.	(3)
108.	(2)	109.	(3)	1	110.	(2)		111.	(1)
112.	(3)	113.	(1)	1	114.	(2)		115.	(3)
116.	(3)	117.	(1)	1	118.	(4)		119.	(4)
120.	(1)	121.	(4)	1	122.	(3)		123.	(1)
124.	(2)	125.	(1)		126.	(3)		127.	(2)
128.	(1)	129.	(4)	\bigcirc	130.	(3)		131.	(1)
132.	(3)	133.	(2)		134.	(2)		135.	(3)
136.	(4)	137.	(1)		138.	(3)		139.	(2)
140.	(2)	141.	(1)	1	142.	(4)		143.	(1)
144.	(3)	145.	(2)	1	146.	(4)		147.	(3)
148.	(1)	149.	(4)	1	150.	(3)			
		2							

SOLUTION

76. $4f \longrightarrow n = 4$ I = 3 m = -I to + I- 3 to + 3

77. $24 \longrightarrow 1s^22s^22p^63s^23p^64s^13d^5$ $I = 1 \rightarrow p \longrightarrow 12$ $I = 2 \rightarrow d \longrightarrow 5$

AICC	E-2004-14				
78.	e p	Li⁺ 2 3	F⁻ 10 9	0 ⁻² 10 8	B ⁺³ 2 5
79.	$\frac{1}{l} = R \frac{\acute{e}1}{\acute{e}n_1^2} - \frac{1}{\acute{e}n_1^2}$	1ù ú n ₂ û			
	= 1.097 ×1		-		
	$\lambda = \frac{1}{1.097}$	10°′m			
80.	$\begin{array}{c} H_2S \longrightarrow \\ NH_3 \longrightarrow \\ BF_3 \longrightarrow \\ SiH_4 \longrightarrow \end{array}$	sp ³ sp ²			
82.	Al, Si, P, S	acidity	ofoxio	des inc	creases G
83.	Bond order Bond order Higher the	of NO	+ = 3	horter	is the bond length
84.	O ⁻¹ (g) + e - Due to the			pulsion	n, amount of the energy is needed to add electron
86.	Total no of = 3+7×4+ Total No of Hybridisa	1 = 32 hybric	l orbita		Cill.
88.	$\frac{E_{1}}{E_{2}} = \frac{T_{1}}{T_{2}}$ $E_{1} = 293$				

$$\frac{L_1}{E_2} = \frac{293}{313}$$

factor = $\frac{313}{293}$

- 89. sp^3d^2 hybridisation confirms to octahedral or square bipyramidal configuration \therefore all the bond angles are 90° in the structure
- 90. Von't Hoffs factor (i) for Na_2SO_4 is maximum i.e. 3(maximum no of particles) $Na_2SO_4 \longrightarrow 2Na^+ + SO_4^-$
- 92. In Vander Waals equation 'b' is the excluded volume i.e. the volume occupied by the molecules

 $\sin = \frac{0.0001 \,\text{`}\, 1000}{100} = 0.01 \,\text{M}$

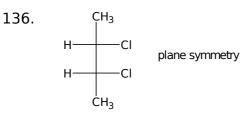
- 93. $6.02 \times 10^{+20}$ molecules of urea is present in =
- 95. No. of gm equivalents of phosphorous acid = No. of gm equivalents of KOH $20 \times 0.1 \times 2$ (n = factor) = $0.1 \times V$

$$= 0.1 \times V$$
$$V = \frac{4}{0.1} = 40 \text{ ml}$$

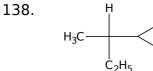
- 96. the molecular weight of C_2H_5OH & CH_3OCH_3 are same so in its vapour phase at same temperature & pressure the densities will be same
- 97. Benzene in methanol breaks the H bonding of the alcohol making its boiling point decrease & there by its vapour pressure increases leading two +ve deviation.

0. 0

- 100. Work done = $-P(\Delta V)$ = $-1 \times 10^5 [10^{-2} - 10^{-3}] = -900 J$
- 102. $t_{1/2} = 15$ minutes \therefore No. of half lives s =2 (\therefore for change of 0.1 to 0.025) is 30 minutes
- 103. Applying law of mass action
- 104. Kp = Kc (RT)^{Δn}
- 105. As per property of equilibria reverse the equation & divide it by 2
- 107. $E_{cell} = E_{RHS}^{\circ} E_{LHS}^{\circ}$ = (0.77) - (-0.14) = 0.91 V
- 108. Ksp = $108s^5$ 1×4⁴×s¹⁺⁴ = 256 s⁵ = Ksp


109.
$$\therefore \log K_{eq} = \frac{nE^{\circ}}{0.0591} = \frac{1^{\circ} 0.591}{0.0591}$$

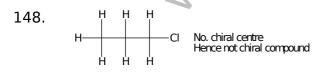
- $\Rightarrow K_{eq} = 10^{10}$ 110. $C + O_2 \longrightarrow CO_2$ $\Delta H = -393.5 \text{ kJ}$ $2CO + \frac{1}{2}O_2 \longrightarrow 2CO_2$ $\Delta H = -283 \text{ kJ}$ $2C + O_2 \longrightarrow 2CO$ $\Delta H = -110 \text{ kJ}$
- 111. $L_{NaCl}^{\circ} = I_{Na}^{\circ} + I_{Cl}^{\circ} = 126 \dots (1)$ $L_{KBr}^{\circ} = I_{K^{+}}^{\circ} + I_{Br^{-}}^{\circ} = 152 \dots (2)$ $L_{KCl}^{\circ} = I_{K^{+}}^{\circ} + I_{Cl}^{\circ} = 150 \dots (3)$ $L_{NaBr}^{\circ} = I_{Na}^{\circ} + I_{Br^{-}}^{\circ}$ $L_{NaBr}^{\circ} = 126 + 152 - 150 = 128$
- 115. $Mg_3N_2 + 6H_2O \longrightarrow 3Mg(OH)_2 + 2NH_3$
- 117. Be & Al have diagonal relationship & so possess similar properties but Be cannot form polymeric hydrides


- 120. oxidation of potential of Cr is least & so it changes easily from +2 to +3 state
- 121. 2 CuSO₄ + 4KI (excess) \longrightarrow 2K₂SO₄ + Cu₂ I₂ + I₂ \uparrow Na₂S₂O₃ + I₂ \longrightarrow Na₂S₄O₆ + 2NaI
- 124. sp^3d^2 : outer orbital octahedral complex
- 125. Chlorophyll contains magnesium instead of calcium

130.
$$2^6 = \frac{200}{a - x}$$

(a - x) = 3.125 gm

135. It is having only sp³ & sp hybridized carbon atom



137. Rate of reaction will be fastest when Z is Cl because it is a weakest base

- 146. Benzaldehyde does not contain α hydrogen. Hence goes for cannizarro's reaction forming alcohol and acid
- 147. CH_3 H_3C OH CH_3

Tertiory alcohols will undergo more easily dehydration than secondary & primary

149. Insulin